NRL Release Number 02-1221.1-1044

Identifying Potential Type Confusion in Authenticated Messages

Catherine Meadows
Code 5543
Naval Research Laboratory
Washington, DC 20375
meadows@itd.nrl.navy.mil

Abstract shown by Heather et al. [4], in which it is proved that,
assuming a Dolev-Yao-type model of a cryptographic
A type confusion attacls one in which a principal ac- protocol and intruder, it is possible to prevent such sim-
cepts data of one type as data of another. Although it h@e type confusion attacks by the use of this technique.
been shown by Heather et al. that there are simple felewever, it is not been shown that this technique will
matting conventions that will guarantee that protocolgork for more complex type confusion attacks, in which
are free from simple type confusions in which fields dags may be confused with data, and terms or pieces
one type are substituted for fields of another, it is nof terms of one type may be confused with concatena-
clear how well they defend against more complex atens of terms of several other typksdore importantly,
tacks, or against attacks arising from interaction withough, although a tagging technique may work within
protocols that are formatted according to different coa-single protocol in which the technique is followed for
ventions. In this paper we show how type confusiaadl authenticated messages, it does not prevent type con-
attacks can arise in realistic situations even when thusion of a protocol that uses the technique with a pro-
types are explicitly defined in at least some of the mescol that does not use the technique, but that does use
sages, using examples from our recent analysis of the same authentication keys. Since it is not uncommon
Group Domain of Interpretation Protocol. We then dder master keys (especially public keys) to be used with
velop a formal model of types that can capture potentrabre than one protocol, it may be necessary to develop
ambiguity of type notation, and outline a procedure father means for determining whether or not type confu-
determining whether or not the types of two messagasen is possible. In this paper we explore these issues
can be confused. We also discuss some open issuesfurther, and describe a procedure for detecting the pos-
sibility of the more complex varieties of type confusion.
The remainder of this paper is organized as follows.
1 Introduction In order to motivate our work, in Section Two, we give a
brief account of a complex type confusion flaw that was
Type confusion attacks arise when it is possible to coigcently found during an analysis of the Group Domain
fuse a message containing data of one type with a megAuthentication Protocol, a secure multicast protocol
sage containing data of another. The most simple typ@ing developed by the Internet Engineering Task Force.
confusion attacks are ones in which fields of one type Section Three we give a formal model for the use of
are confused with fields of another type, such as is dgPes in protocols that takes into account possible type
scribed in [7], but it is also possible to imagine attaci@nbiguity. In Section Four we describe various tech-
in which fields of one type are confused with a contiques for constructing the artifacts that will be used in
catenation of fields of another type, as is described 8Yr procedure. In Section Five we give a procedure for
Snekkenes in [8], or even attacks in which pieces @gtermining whether itis possible to confuse the type of
fields of one type are confused with pieces of fields B¥0 messages. In Section Six we illustrate our proce-
other types. dure by showing how it could be applied to a simplified
Simple type confusion attacks, in which a field of onersion of GDOI. In Section Seven we conclude the pa-

type Is Confus.Ed Wlth a field of another type, are easy 1We believe that it could, however, if the type tags were augmented
to prevent b_y ”?ClUdmg type labels (tags) fo_r all datgy, tags giving the length of the tagged field, as is done in many
and authenticating labels as well as data. This has bégslementations of cryptographic protocols.

green
Text Box
NRL Release Number 02-1221.1-1044

per and give suggestions for further research. Groupkey Push Message both begins and ends in a ran-
dom number.

We found two type confusion attacks. In both, we as-
2 The GDOI Attack sume that the same private key is used by the GCKS to
n POPs and Groupkey Push Messages. In the first
these, we assume a dishonest group member who
ants to pass off a signed POP from the GCKS as a
roupkey Push Message. To do this, we assume that she
%Lreates a fake plaintext Groupkey Push Message GPM,
Rhich is missing only the last (random) part of the Key
. Download Payload. She then initiates an instance of the
agement, which imposes some constraints on the Wa}@ﬂ)upkey Pull Protocol with the GCKS, but in place of

which it is formatted. GDOI consists of two parts. IR .. \o0-o she sends GPM. The GCKS responds by ap-
the first part, called the Groupkey Pull Protocol, a prirg} ’ '

In this section we describe a type flaw attack that w%lﬁg
found on an early version of the GDOI protocol.

The Group Domain of Interpretation protocol (GDOI
[2], is a group key distribution protocol that is underg
ing the IETF standardization process. It is built on t

T . pending its nonce NB and signing it, to create a signed
cipal joins the group and gets a group key-encryptio

- 5PM,NB). If NB is of the right size, this will look like
key from the Group Controller/Key Distributor (GCKS)a signed Groupkey Push Message. The group member

in a handshake protocol protected by a pairwise key tI}%tn then encrypt it with the key encryption key (which

was originally exchanged using IKE. In the second Pah e will know. beind a aroun memben and send it out to
called the Groupkey Push Message, the GCKS sereﬁig ;_Nr:tire g:/(v),up ing agroup) tou

out new traffic encryption keys protected by the GCKS's The second attack requires a few more assumptions.

digital signature and the key encryption key. XYe assume that there is a group member A who can also

. Both pieces of the protocol can make use of dlgltact as a GCKS, and that the pairwise key between A and
signatures. The Groupkey Pull Protocol offers the oglhother GCKS, B, is stolen, but that B's private key is

tion of including a Proof-of-Possession field, in which.. :
: .) till secure. Suppose that A, acting as a group mem-
either or both parties can prove possession of a putﬂlc

key by signing the concatenation of a nonce NA gen er, initiates a Groupkey Pull Protocol with B. Since

ated by the aroun member and a nonce NB aener %ir pairwise key is stolen, it is possible for an intruder

y group NP 9ENeTael insert a fake nonce for B's nonce NB. The nonce

by the GCKS. This can be used to show linkage with a . . ,

o o . he inserts is a fake Groupkey Push Message GPM’ that

certificate containing the public key, and hence the POS:S complete except for a prefix of the header consist-
session of any identity or privileges stored in that certifl- o

cate ing of all or part of the random number beginning the

e . header. A then signs (NA,GPM’), which, if NA is of the
As for the Groupkey Push Message, it is first S"gnerght length, will look like the signed part of a Group-
e

by the GCKS'’s private key, and then encrypted with ﬂk y Push Message. The intruder can then find out the

key encryption key. The signed information includes a .
header HDR, (which is sent in the clear), and contai Key encryption key from the completed Groupkey Pull

besides the header, the following information: 'Protocol and use it to encrypt the resulting (NA,GPM)

to create a convincing fake Groupkey Push Message.
1. a sequence number SEQ (to guard against rep|ayortunately, the fix was simple. Although GDOI was

attacks): constrained by the formatting required by ISAKMP, this
was not the case for the information that was signed
2. asecurity association SA; within GDOI. Thus, the protocol was modified so that,

whenever a message was signed within GDOI, informa-
tion was prepended saying what the purpose was (e.g.

4. an optional certificate, CERT. a member's POP, or a Groupkey Push Message). This

eliminated the type confusion attacks.

According to the conventions of ISAKMP, HDR must There are several things to note here. The first is that
begin with a random or pseudo-random number. In pa@xisting protocol analysis tools are not very good at find-
wise protocols, this is jointly generated by both partieisg these types of attacks. Most assume that some sort
but in GDOI, since the message must go from one &b strong typing is already implemented. Even when
many, this is not practical. Thus, the number is genehis is not the case, the ability to handle the various
ated by the GCKS. Similarly, it is likely that the Keycombinations that arise is somewhat limited. For ex-
Download message will end in arandom number: a kemple, we found the second, less feasible, attack auto-
Thus, it is reasonable to assume that the signed part ofiatically with the NRL Protocol Analyzer, but the tool

3. a Key Download payload KD, and;

could not have found the first attack, since the abilityho possess information and can check properties of
to model it requires the ability to model the associatidlata based on that information. Some information is
ity of concatenation, which the NRL Protocol Analyzepublic and is shared by all principals. Other informa-
lacks. Moreover, type confusion attacks do not requir¢ian may belong to only one or a few principals.

perfect matching between fields of different types. For

example, in order for the second attack to succeedPgfinition 3.1 A field is a sequence of bits. We let

is not necessary for NA to be the same size as the réghote the empty field. ifandy are two fields, we let
dom number beginning the header, only that it be #dly denote the concatenationsefandy. If z andy are
longer than that number. Again, this is something thatto lists of fields, then we letppend(z, y) denote the
not within the capacity of most crypto protocol analys#st obtained by appendingto z.

tools. Finally, most crypto protocol analysis tools are , .
not equipped for probabilistic analysis, so they woufséeflnltlon 32 Atypeis a set of fields, which may or

not be able to find cases in which, although type coay not have a probability distribution attached. Af

fusion would not be possible every time, it would occd? 2 princip_al,. then etypellocal to As a type suph that
with a high enough rf)robability to t);e a concern. membership in that type is checkable by Rublic type

The other thing to note is that, as we said before, evIS pne whose memper§h|p Is checkable b_y all principals.
. ; ; is a group of principals, then type private to As
though it is possible to construct techniques that can b P .
: ; . atype such that membership in that type is checkable by

used to guarantee that protocols will not interact insg-

curely with other protocols that are formatted using thec members a¥ and only the members 6.
same technique, it does not mean that they will ”Otimer'Examples of a public type would be all strings of
act insecurely with protocols that were formatted usirpgngth 256, the string “key,” or well-formed IP ad-
different techniques, especially if, in the case of GDOlgesses. Examples of private types would be a random
use of ISAKMP, the protocol wound up being used difjonce generated by a principal (private to that principal)
ferently than it was originally intended (for one-to-many principal’s private signature key (private to that princi-
instead of pairwise communication). Indeed, this is tfpﬁb' and a secret key shared by Alice and Bob (private
result one would expect given previous results on proigr Ajice and Bob, and perhaps the server that generated
col interaction [5, 1]. Since it is to be expected that difne key, if one exists). Note that a private type is not nec-
ferent protocols will often use the same keys, it seerdssarily secret; all that is required is that only members
prudent to investigate to what extent an authenti_catgplthe group to whom the type is private have a guaran-
message from one protocol could be confused with &bg means of checking whether or not a field belongs to
authenticated message from another, and to what exigg type. As in the case of the random number gener-
this could be exploited by a hostile intruder. The rest gfgq by a principal, other principals may have been told
this paper yvill be devoted to the discussion of a procgpt 3 field belongs to the type, but they do not have a
dure for doing so. reliable means of verifying this.
The decision as to whether or not a type is private or
public may also depend upon the protocol in which it
3 The Model is used and the properties that are being proved about
the protocol. For example, to verify the security of a
In this section we will describe the model that underliggotocol that uses public keys to distribute master keys,
our procedure. It is motivated by the fact that diffetwe may want to assume that a principal’s public key is
ent principals may have different capacities for checkirzgpublic type, while if the purpose of the protocol is to
types of messages and fields in messages. Some injatidate a principal’s public key, we may want to assume
mation, like the length of the field, may be checkable bijtat the type is private to that principal and some certi-
anybody. Other information, like whether or not a fieléication authority. If the purpose of the protocol is to
is a random number generated by a principal, or a shstribute the public key to the principal, we may want
cret key belonging to a principal, will only be checkablg assume that the type is private to the certification au-
by the principal who generated the random number tinority alone.
the first case, and by the possessor(s) of the secret ke@ur use of public and local types is motivated as fol-
in the second place. In order to do this, we need to dews. Suppose that an intruder wants to fool Bob into
velop a theory of types that take differing capacities faiccepting an authenticated messagiérom a principal
checking types into account. Alice as an authenticated messagdrom Alice. Since
We assume an environment consisting of principald is generated by Alice, it will consist of types local to

her. Thus, for example, i}/ is supposed to contain asent toA in a message. An example of a probabilistic
field generated by Alice it will be a field generated biype that is also under the control dfwould be a nonce
her, but if it is supposed to contain a field generated ggnerated byl and sent byd in a message, or received
another party, Alice may only be able to check the puby A in some later message.
lically available information such as the formatting of
that field before deciding to include it in the messagPefinition 3.4 Let X andY be two types. We say that
Likewise, if Bob is verifying a message purporting to b& MY holds if an intruder can force a protocol to pro-
N, he will only be able to check for the types local téluce an element of X that is also an element of.
himself. Thus, our goal is to be able to check whether)] .
or not a message built from types local to Alice can be Of course, we are actually interested in the probgbn—
confused with another message built from types localif that X MY holds. Although the means for calculating
Bob, and from there, to determine if an intruder is abf(X 1Y) may vary, we note that the following holds if
to take advantage of this to fool Bob into producing #€re are no other constraints ahandy’:
message that can masquerade as one from Alice.

We do not attempt to give a complete model of an in-
truder in this paper, but we do need to have at at least
some idea of what types mean from the point of view

of the intruder to help us in computing the probability 5 |t x s under the control of the intruder, afidis a
of an intruder’s producing type confusion attacks. In type under the control of, and the intruder knows
particular, we want to determine the probability thatthe {6 value of the member af before choosing the
intruder can produce (or force the protocol to produce) ember ofX, thenP(Y N X) = P(i € X NY),

a fie!d of one type that also be[ongs to.another type. I_Es— wheres is the random variable associated with
sentially, there are two questions of interest to an in-

truder: given atype, can it control what field of thattype 3. If X a type under the control ofl, andY is a
is sentin a message, and given a type, will any arbitrary type local toB but not under the control @8, then
member of that type be accepted by a principal, or will P(XNY)=P(z € XNY);

a member be accepted only with a certain probability.

1. If X andY are both under the control of the in-
truder, thenP(X MY)is1if X NY # ¢ andis
zero otherwise;

4. If X is under the control ofA andY” is under the

Definition 3.3 We say that a type isnder the control of control of some other (non-intrudeB), thenP (Y11
the intrudeif there is no probability distribution associ- X) = P(¢ = gy) wherez is the random variable
ated with it. We say that a typepsobabilisticif there a associated withX, andy is the random variable

a probability distribution associated with it. We say that associated withy".
a probabilistic type local to a principal is under the
control of A if the probability of A accepting a field as Now that we have a notion of type for fields, we ex-
a member ofX is given by the probability distributiontend it to a notion of type for messages.
associated with¥ .
Definition 3.5 A messagés a concatenation of one or
The idea behind probabilistic types and types undgiore fields.
control of the intruder is that the intruder can choose
what member of a type can be used in a message iD#finition 3.6 Amessage typis a functionk from lists
is under its control, but for probabilistic types the fieldf fields to types, such that:
used will be chosen according to the probability distri- L
bution associated with the type. On the other hand, ifl- The empty listis iiom(R);
a type is not under the control of a princip&l then A

2. D R) if d ly if
will accept any member of that type, while if the type (w1, mi) € om(R) if and only i

(x1,..,xg—1) € Dom(R) and z €

is under the control ofd, she will only accept an ele- R((x 2o 1):
ment as being a member of that type according to the Lo k=1l
probability associated with that type. 3. 1f (21,..,2x) € Dom(R), andzx = s, then

An example of a type under the control of an in- R((zy,...,2;)) = {+},and ;
truder would be a nonce generated by the intruder, per-
haps while impersonating someone else. An examplé. For any infinite sequencg = (..., z;, ...) such that
of a probabilistic type that is not under the controlof all prefixes ofS are in Dom(R), there exists am
would be a nonce generated by another principaind such that, for alki > n, z; = «.

The second part of the definition shows how, once thes.

first k — 1 fields of a message are known, tHRncan
be used to predict the type of tikéh field. The third
and fourth parts describe the use of the empty:list

R((“nonce”,N1)) = {X|length(X) = Ni}.
Again, this is a private type consisting of the set
of fields of length/V;. In this case, we can choose
the probability distribution to be the uniform one.

indicating message termination. The third part says that,

if the message terminates, then it can’t start up agairé- R({“nonce”, Ny, NONCE,)) = {“nonce"}.

The fourth part says that all messages must be finite.

Note, however, that it does not require that message?: R((“nonce", Ny, NON CEM “nonce”)) =

be of bounded length. Thus, for example, it would be {X|length(X) = 16}. Since the sender did not

possible to specify, say, a message type that consists of actually generateV, all he can do is check that

an unbounded list of keys. it is of the proper length, 16. Thus, this type is
The idea behind this definition is that the type of the 1Ot under the control of the sender. ¥, was not

n'th field of a message may depend on information that @uthenticated, then it is under the control of the

has gone before, but exactly where this information goes Intruder.

may depend upon the exact encoding system used. Fgr R((“nonce”, Ny, NONCEy, “nonce”, Na)) =

example, in the tagging system in [4], the type is given (Vliength(Y) = N,}. Again, this value is not
by atag that precedes the field. In many implementa- under iqhe cont:ol 02f t.he sender all the principal
tions, the tag will consist of two terms, one giving the can do is check that what purpc;rts 10 be a nonce
general type (e.g. “nonce”), and the other giving the is indeed of the appropriate length

length of the field. Other implementations may use this '
same two-part tag, but it may not appear right before7. R({(“nonce”, Ny, NONCEj, “nonce”, Ny

the field; for example in ISAKMP, and hence in GDOI, yon g, >’) _ . This last tells us that the
the tag refers, not to the field immediately following it, message énds here.

but the field immediately after that. However, no matter

how tagging is implemented, we believe that it is safe £, the point of view of the receiver of the message,
to assume that any information about the type of a figldh, \essage type will be somewhat different. The last
will come somewhere before the field, since otherwiﬁﬁlo fields, No and NONCE;, will be types under the

it might require knowledge about the field that only th@ontrol of the receiver, whileV; and NONCE; will

tag can supply (such as where the field ends) in orderog) types not under its control, and perhaps under the

find the tag. control of the intruder, whose only checkable property
o . is their length. This motivates the following definition:
Definition 3.7 Thesupportof a message typR is the
set of all messages of the form||...|[z,, such that pefinition 3.8 A message type local to a principalis
(1,0, 2n) € Dom(R). a message typR whose range is made up of types local
to P.
For an example of a message type, we consider a mes-

sage of the form We are now in a position to define type confusion.
“nonce”, N\, NONCE;, “nonce”, N5, NONCE,

where NONCE, is a random number of length, pefinition 3.9 Let R andS be two message types. We

generated by the creator of the messadgis a 16-bit say that a pair of sequencéss, ..., z,,) € Dom(R)

integer, andVON C'E; is a random number of lengthand(y, 4,,) € Dom(S) is atype confusion between
N,, where bothNONCE, and N, are generated by R ands if:

the intended receiver, amil, is another 16-bit integer.
From the point of view of the generator of the messageg , ¢ R((z1, ..., z,));
the message type is as follows:
2.1 €Sy, -, ym)), and;
1. R()) = “nonce”.
3.]|z = vill---l|lym.-
2. R((“nonce’)) = {X|length(X) = 16}. Since
Ny is generated by the sender, it is a type under theThe first two conditions say that the sequences de-
control of the sender consisting of the set of 16-k8tribe complete messages. That last conditions says that
integers, with a certain probability attached. the messages, considered as bit-strings, are identical.

Definition 3.10 LetR andS be two message types. WBefinition 4.3 We say that a message type or n-prefix
say thatR M S holds if an intruder is able to force amessage typR is t-boundedf R(z) = . for all tuples
protocol to produce arz: in Dom(R) such that there z of length t or greater.

existsy in Dom/(S) such thatz,) is a type confusion..] .
In particular, a message type that is both t-bounded

Again, what we are interested in is computing, or &nd t-postfix will be a trivial message type.
least estimatingl’(RMS). This will be done in Section

5 Definition 4.4 LetR be an n-postfix message type. Let

X be a set of m-tuples in the pre-imagefof where m
> n. ThenR | X is defined to be the restriction of R to

4 Constructlng and Rearranglng the set of a”(lﬁl, ey Ty ...,$7-> in DOTTL(R) such that

(1, xm) € X.
Message Types
Definition 4.5 Let R be an n-prefix message type. Let

In order to perform our comparison procedure, we wik be a set of n-1 tuples. TheR[X is defined to

need the ability to build up and tear down messagje the restriction ofR to the set of all tupleg such

types, and create new message types out of old. In thist z € X, or z = (z1,...z;) such that there exists

section we describe the various ways that we can do tHig.+1, ---, yn—1) such that(xzy, ...z, Yit1, .., Yn—1) €
We begin by defining functions that are restrictions of .

message types (in particular to prefixes and postfixes of i
tuples). Definition 4.6 Let R be an n-postfix message type.

Then Split(R) is the function whose domain is the
setof all(zy, ..., zn, Y1, Y2, Tnt2, ..., Tm) Of length n+1
or greater such thafzy, ..., 2, y1||y2, T2, ooy Tm) €
Dom(R) and such that

Definition 4.1 An n-postfix message tyge a function
R from tuples of length or greater to types such that:

1. Forallk > 0, (xq,...,2,1) € Dom(R) if and

only if s € RU(T1s s s 1)): a. For the tuples of length i> n +1,

Split(R)«xl’"',mn,yl,y27mn+27"'7Xm>) =

2. If <1‘1, ---,mn+k> € DOIH(R), andmnﬂc =, then R(<x17 ---;mey1||y2,33n+2; "';xm>)u and,
R((z1, - Tnggr)) = {1}, and; b. For tuples of length n +1

3. For any infinite sequencé = (..., z;,...) such Split(R)((y1, > Yn+1)) = {= |
that all prefixes ofS of lengthn and greater are (Y1, Ynt1lz) € Dom(R).

|_n Dom(?z_)' there exists ann such that, for all Definition 4.7 Let R be an n-prefix message type. Let
L>m, T = 0 F be a function from a set of n-tuples to types such that

- there is at least one tuple:;1 ..., z,,) in the domain of
We note that the restriction of a message tfpéo L .
ge 1P F such that{z;y1...,,,—1) isin the domain ofR. Then

sequences of length n or greater is an n-postfix mes: ; . .
sage type, and that a message type is a 0-postfix mes% £, theextension ofR by F, is the function whose

type. ainis
o _ _ a. For i < n, the set of all{(z;....,z;) such that
Definition 4.2 An n-prefix message type is a functign (1....,x;) € Dom(R), and such that there exists
from tuples of length less thanto types such that: (Tit1...,xn) Such that(z:...., i, Tipy...,zn) €
1. R is defined over the empty list; Dom(F);
. b For i = n, the set of all {x1....,2p—1,Zy)
2. .FOI' allk < n, <.Z‘1, ...,.Z’k> € DOIII(R) if and only such that <.Z’1....,.Z‘n,1> € DOTTL(R) and
if T € R((Sﬁl, ...,xk_1>), and; <1‘1....,1‘n,1,1’n> € DO?TL(F),

3. Ifk < n—1 and(z1,...,zx) € Dom(R), and and whose restriction to tuples of length less than n is
zp = t, thenR((z1, ..., Tx41)) = {¢}. R, and whose restriction to n-tuples f&

We note that the restriction of a message type to $&roposition 4.1 If R is an n-postfix message type, then
quences of length less thanis ann-prefix message R|X is an m-postfix message type for any set of m-
type. tuples X, and Split(R) is an (n+1)-postfix message

type. IfR is t-bounded, then so B | X, while Split(R) identical to elements of the second type7df and so

is (t+1)-bounded. Moreover, if S is an n-prefix messaf@rth. So we will need to take into account three cases:
type, then so isS[Y for any set of n-1 tuple¥’, and the first, where two types have a nonempty intersection,
StF is an (n+1)-prefix message type for any function the second, where a type froRh(or a set of remainders
from n-tuples to types such at for at least one elemarittypes fromR) has a nonempty intersection with a
(Zit1..., Ty) In the domain ofF, (z;41...,z,—1) IS in set of prefixes from the second type&fand the third,

the domain of. where a type fromS (or a set of remainders of types
from S) has a nonempty intersection with a set of pre-
We close with one final definition. fixes from the second type &. All of these will im-

pose a constraint on the relative lengths of the elements
Definition 4.8 Let F' be a function from k-tuples ofof the types fromS andR, which need to be taken into
fields to types. We defin@re(F') to be the function account, since some conditions on lengths may be more
from k-tuples of fields to types defined Bye(F')(z) likely to be satisfied than others.
is the set of all prefixes of all elementsiofz). Our plan is to construct our zipper by use of a tree in
which each node has up to three possible child nodes,

. corresponding to the three possibilities given above. Let
5 The Zipper: A Procedure for x ands be two message types, and jebe a number

Comparina Messaae Tvpes between 1 and 0, such that we are attempting to deter-
P 9 g yp mine whether the probability of constructing a type con-

We now can define our procedure for determinidySion betweerR andS is greater thap. We define a
whether or not type confusion is possible between tigrtiary tree of sept-tuples as follows. The first entry of
message typeR andsS, that is, whether it is possible€ach sept-tuple is a sktof triples (z, 7, z), wherex is

for a verifier to mistake a message of tyRegenerated @ Pit-string andy = (y1, ..., y,) andz = (21, ..., zm)

by some principal for a message of ty§@enerated by SUch thaty1||...{[yn = z1[]...||z;m = 2. We will call
that same principal , wher® is a message type IocaIU_ the supportof the ngde. The second and th|rql en-
to the generator, and is a message type local to thdries aren and m postfix message types, respegtlvely.
verifier. But, in order for this to occur, the probability’ "€ fourth and fifth are message types or prefix mes-
of R 1S must be nontrivial. For example, consider 829€ types. The sixth is a probability The seventh is
case in whichR is a type local to and under the contro? set' of constraints on lengths of types. The rpot of the
of Alice consisting of a random variable 64 bits longree is of the form¢, R, S, (), (), 1, D), whereD is the
andsS consists of another random 64-bit variable loc&ft Of length constraints introduced Byands.

to and under the control of Bob. Itis possible tiat s~ Givenanode(U, #,7, 7, K, ¢, C), we construct up
holds, but the probability that this is so is onl§264. on {0 three child nodes as follows:

the other hand, iR is under the control of the intruder,
then the probability that their support is non-empty is
one. Thus, we need to choose a threshold probability,
such that we consider a type confusion whose probabil-
ity falls below the threshold to be of negligible conse-

1. The first node corresponds to the case in which a
term from H can be confused with a term from
I. Let T be the set of al{z,§,z) € U such that
P(H(y) NZ(2) # ¢) - q > p. Then, ifT is non-
empty, we construct a child node as follows:

quence.

Once we have chosen a threshold probability, our a. The first element of the new tuple is the set
strategy will be to construct a “zipper’between the two T of all (z',5',z') such that there exists
message types to determine their common support. We (z,7,%) € T such thate’ = z||y;, where
will begin by finding the first type oR and the first type 1 € Ha(), 7 = append(i, (y1)), and
of S, and look for their intersection. Once we have done 7' = append(z, (y,));
this, for each element in the common support, we will Note that, by definitiony; is an element of
look for the intersection of the next two possible types 7(2) as well asH ().

of R and S, respectively, and so on. Our search will)]
be complicated, however, by the fact that the matchup ~ P- The second element is the (n+1)-postfix

may not be between types, but between pieces of types. message jype”HlLWR, where Wr =
Thus, for example, elements of the first typefoinay {g'l(«",9',2") € T'};

be identical to the prefixes of elements of the first type c. The third element is the (m+1)-
of S, while the remainders of these elements may be postfix message typeZ|Ws, where

Ws ={Z'|{z",y',2") € T'};

d. The fourth element i§J4H,)[Vr, where
Ve =A{yl(z,y,2) € T},

e. Thefifth elementiskiZ,,)[Vs, wherelVs =
{2l(z,9,2) € T};

f. The sixth element ismaz({P(H,(§) N
In(Z) # ¢ | Jxs.t.(z,5,2) € T)}) - ¢, and;

g. The seventh element@sU {c, }, wherec; is
the constraintength(#,,) = length(Z,).

We call this first node th@ode generated by the
constraintlength(#,) = length(Z,,).

. The second node corresponds to the case in which
a type from# can be confused wit prefix of a type
fromZ.

LetT be the set of alfx, i, z) such thatP(H,, ()N
Pre(Z,,)(%)) - ¢ > p. Then, ifT is non-empty, we
construct a child node as follows:

a. The first element of the new tuple is the set
T' of all (z',7',z") such that there exists
(x,9,Z) € T such thatz’ = z||y;, where

yi € Ha(@), ¥ = append(§.(y1)), and

. The first element of the new tuple is the set

T' of all (z',3',z") such that there exists
(z,9,z) € T such thatr’ = zl||y;, where
y1 € Pre(Hn) (), ¥' = append(y, (y1)),
andz’ = append(z, (y1);

Note that, in this casg, is an element,, (2)
as well.

. The second element is the n-postfix mes-

sage typeSplit(H)|Wgr, where Wy =
{y'la'y',2") € T'};

. The third element is the (m+1)-postfix

message typeZ|Ws , where Wg =
{Z|(",7',2") e T'};

. The fourth element i§.7¢Pre(H,)))[Vr,

whereVg = {j|(z,7,2) € T},

. Thefifth elementisK4Z,,)[Vs, whereVs =

{zl(z,y,2) € T},

. The sixth elementismaz ({ P(Pre(H,) ()N

Im(2)) | Fxs.t.(z,9,2) € T)}) - ¢, and;

. The seventh element@U {c, }, wherec; is

the constraintength(#,,) > length(Z,,).

We call this node th@ode generated by the con

We call this node th@ode generated by the con-

z' = d(z ; :
2" = append(Z, (y1)) straintlength(#,) > length(Z,,).

Note that, in this casg; is an element of

Pre(Z,)(2)) as well. The idea behind the nodes in the tree is as follows.
. The second element is the (n+1)-postfikhe first entry in the sept-tuple corresponds to the part
message type#H|Wgr, where Wy = of the zipper that we have found so far. The second and
{7, g',2")y e T'}; third corresponds to the portions & and S that are
. The third element is the m-postfix mesSlill to be compared. The fourth and fifth correspond to
sage typeSplit(Z)|Ws , where Wg = the portions ofR gndS that we have compared so far.'
(Z|(z', 5, ') € T'Y: The sixth entry gives an upper bound on the probabil-

ity that this portion of the zipper can be constructed by
an attacker. The seventh entry gives the constraints on
lengths of fields that are satisfied by this portion of the
zipper.

. The fourth element i§7t%,)[Vr, where
Vi = {:17|<.Z’,:lj,§> € T}*

. The fifth element is(K§Pre(Z))[Vs,
whereVs = {z|(z,7,z) € T};

. The sixth element of the tuple isDefinition 5.1 We say that a zippesucceed# it con-
maz({P(Hn(y) N Pre(Zn)(z) | tainsanodgU, (), (), J,K,q,C).

Jzs.t.(2,4,2) € T))}) - ¢, and; Theorem 5.1 The zipper terminates for bounded mes-
. The seventh element@sU {c; }, wherec; is sage types, and, whether or not it terminates, it succeeds
the constraintength(#,) < length(Z,). if there are any type confusions of probability greater
thanp. For bounded message types, the complexity is

straintlength(#,,) < length(Z,,). exponential in the number of message fields.

. The third node corresponds to the case in which_a

prefix of a type fron# can be confusedwithatyped AN Example: An Analysis of

fromZ.
Let T be the set of alz,y,z) in Usuch that

GDOl

P(Pre(H,)(g) NZ(Z)) - ¢ > p. Then, ifT is In this section we give a partial analysis of the signed
nonempty, we construct a child node as follows: messages of a simplified version of the GDOI protocol.

There are actually three such messages. They are: tle S((z1, 22, z3)) = {sig};
POP signed by the group member, the POP signed by
the GCKS, and the Groupkey Push Message signed by S((z1,%2,5,24)) = KDLENGTH, where
the GCKS. We will show how the POP signed by the K DLENGTH is the type consisting of all 2-byte
GCKS can be confused with the Groupkey Push Mes- Numbers;
sage.

The POP is of the formVONCE4, NONCEp © i(e(f”tlxgl‘g?ﬁg ERﬁgiiéDof};’"Whg;_
where NONCE,4 is a random number generated by bl Kyg headers whose lenath is less th;n—
a group member, anONC Ep is a random number 1 b dgth lue of
generated by the GCKS. The lengths\6) NC E 4 and ength(zy ||z ||z3[|z4l|s) and the value of;.
NONCEB are not.constrained by the protocol. Since S((x1,x0, 73,20, 75,76)) = KEYS, where
we are interested in the types local to the GCKS, we
haveNON CE 4 the type consisting of all numbers, and
NONCEg the type local to the GCKS consisting of the
the single nonce generated by the GCKS.

We can thus define the POP as a message type local

to the GCKS as follows: All of the above types are local to the receiver, but

1. R(()) = NONCE4 where NONCE, is the under the gontrol of thg sender.' .
type under the control of the intruder consisting of We begin by creating the first three child nodes.
all numbers, and: All three cases length() = length¢), lengthf) <
length{), and lengthg;) > length), are non-trivial,
2. R({y1)) = NONCEg where NONCEE is a sincez; € NONCEy is an arbitrary 16-byte number,
type under control of the GCKS. andy, € NONCE, is a completely arbitrary num-

We next give a simplified (for the purpose of expd?€'- Hence the probability GWONCE4, NI NONCEp

sition) Groupkey Push Message. We describe a vers|grPn€ in all cases. But let's look at the children of
that consists only of the Header and the Key Downlo&d€S€ nodes. For the node corresponding to lepgih(
Payload: = length¢:;), we need to compare, andy.. The term
NONCEy,kd, MESSAGE_LENGTH, sig x5 is the payload identifier corresponding to “kd”. It
KDLENCTH. KDHEADER. KEYS is one byte long. The terry, is the random nonce
The NONCEy at the beginning of the header id' OVCEr generated by the GCKS. Singg is the
of fixed length (16 bytes). The one-byte kd fiellpst fleld in the POP, there is only one possibility;
gives the type of the first payload, while the 4-bytfat is, length(z) < length(y). But this would re-

MESSAGE_LENGTH gives the length of the mes-duire @ member o’re(NONCEp) to be equal to

sage in bytes. The one-byte sig field gives the typd ™~ Since NONCEj is local to the GCKS and un-
r its control, the chance of this i§/2%. If this is

of the next payload (in this case the signature, whigﬁ)
is not part of the signed message), while the 2-bft'8t tpo small to worry about, we construct the chllld
KDLENGTH gives the length of the key download)f_ this node. Again, there will be only one, and it
payload. We divide the key download data into pwiill correspond to lengthf;) < lengthg,) - lengthr,).

parts, a header which gives information about the key, this case,z; is the apparently arbitrary number

and the key data, which is random and controlled by théESSAGE-LENGTH. But there is a nontriv-
GCKS. (This last is greatly simplified from the actudf! relationship betwee/ ESSAGE_LENGTH and
GDOI specification). NONCEg,inthatM ESSAGE_LENGT H mustde-

We can thus define the Groupkey Push Message asstﬁ'gbe alength equal @/ + N, yvhereM is the Ier_lgth
of the part of NONC Eg remaining after the point at

following message type local to the intended receiver.” * o
which MESSAGE_LENGTH appears in it, andV
1. S(()) = NONCEg where NONCEp is the describes the length of the signature payload. Since both
type consisting of all 16-byte numbers; of these lengths are outside of the intruder’s control, the
.) probability that the first part oNONCEp will have
2. S({w)) = {kd}; exactly this value id/2'5. We are now up to a proba-
3. S({x1,22)) = MESSAGE_.LENGTH, where bility of 1/224.
MESSAGE_LENGTH is the type consisting of When we go to the next child node, again the only
all 4-byte numbers; possibility is lengthts) < lengthfs) - lengths) -

KEYS is the set of all numbers whose length is
less thanz:3 — length(x1||x2||x3||x4||x5||x6) and
equal toz; — length(zg). Note that the second
constraint makes the first redundant.

length@,), and the comparison in this case is with thied field, this is fairly straightforward. In other
1-byte representation of “sig”. The probability of typeases, as in the comparison betwéé® NCEg and
confusion now becomels/232. If this is still a concern, M ESSAGE_LENGT H from above, things may be
we can continue in this fashion, comparing pieces ofore tricky. This is because, even though the type of
NON CEpg with the components of the Groupkey Pusa field is a function of the fields that come before it
Message until the risk has been reduced to an accepta message, the values of the fields that come after it
able level. A similar line of reasoning works for thenay also act as a constraint, as the length of the part of
case lengthf,) < length{,). the message appearing afftedtESSAGE_LENGTH
We now look at the case length > length@;), and does on the value tW ESSAGE_LENGTH.
show how it can be used to construct the attack we men©Other subtleties may arise from the fact that other
tioned at the beginning of this paper. We concentrdatdormation that may or may not be available to
on the child node generated by the constraint leng)h(the intruder may affect the probability of type con-
- length@,) > length@,). Sincey; € NONCE, fusion. For example, in the comparison between
is an arbitrary number, the probability thai can be M ESSAGE_LENGTH and NONCEg, the in-
taken for a piece ofj;, given the length constraint, istruder has to generatdVONCE, before it sees
one. We continue in this fashion, until we come to tiWONCEpg. If it could generateNONCE, after it
node generated by the constraint lengthlengthf,) saw NONCEpg, this would give it some more con-
- Z?Zl x;. The remaining field of the Groupkey Pulkrol over the placement oM ESSAGE_LENGTH
Messageg; € KEY S is an arbitrary number, so thewith respectt to NONCEpg. This would in-
chance that the remaining field of the P@Ptogether crease the likelyhood that it would be able to force
with what remains ofj;, can be mistaken fat;, is one, MESSAGE_LENGTH to have the appropriate
since the concatenation of the remaing ofith 3., by value.
definition, will be a member of the abitrary SEtEY'S. But, although we will need to deal with special cases
like these, we believe that, in practice, the number of dif-
ferent types of such special cases will be small, and thus
7 Conclusion and Discussion we believe that it should be possible to narrow the prob-
lem down so that a more efficient and easily automat-
We have developed a procedure for determining wheti@{e approach becomes possible. In particular, a study
or not type confusions are possible in signed messa§éshe most popular approaches to formatting crypto-
in a cryptographic protocol. Our approach has certadfiaphic protocols should yield some insights here.
advantages over previous applications of formal meth-
ods to type confusion; we can take into account the p

sibility that an attacker could cause pieces of mess%e ACknOWIedgementS

fields to be confused with each other, as well as entire

fields. It also takes into account the probability of an afve are greatful to MSec and SMuG Working Groups,

tack succeeding. Thus, for example, it would catch medd in particular to the authors for the GDOI protocol,
sage type attacks in which typing tags, although presdff, Many help(;‘ut: discussions on this topic. This work
are so short that it is possible to generate them randoﬁN@s supported by ONR.
with a non-trivial probability.

Our greater generality comes at a cost, however. (jq(?ferences
procedure is not guaranteed to terminate for unbounde
message types, and even for bounded types it is ex%j
nential in the number of message fields. Thus, it would' ;4 protocols: The two party symmetric encryption

have not have terminated for the actual, unsimplified, .5ce InProc. 22nd National Information Systems
GDOI protocol, which allows an arbitrary number of Security ConferenceArlington, VA, 1999.

keys in the Key Download payload, although it still

would have found the type confusion attacks that we d@] Mark Baugher, Thomas Hardjono, Hugh Harney,

scribed at the beginning of this paper. and Brian Weis. The Group Domain of In-
Also, we have left open the problem of how the terpretation. Internet Draft draft-ietf-msec-gdoi-

probabilities are actually computed, although in many 04.txt, Internet Engineering Task Force, February

cases, such as that of determining whether or not 26 2002. available at http://www.ietf.org/internet-

a random number can be mistaken for a format- drafts/draft-ietf-msec-gdoi-04.txt.

"~ J. Alves-Foss. Provably insecure mutual authentica-

[3] D. Harkins and D. Carrel. The Internet Keyj6] D. Maughan, M. Schertler, M. Schneider, and
Exchange (IKE). RFC 2409, Internet Engineer- J. Turner. Internet Security Association and Key
ing Task FOrce, November 1998. available at Management Protocol (ISAKMP). Request for
http://ietf.org/rfc/rfc2409.txt. Comments 2408, Network Working Group, Novem-

i . ber 1998. Available at http://ietf.org/rfc/rfc2408.txt.
[4] James Heather, Gavin Lowe, and Steve Schneider.

How to prevent type flaw attacks on security protg7] Catherine Meadows. Analyzing the Needham-
cols. InProceedings of 13th IEEE Computer Secu- Schroeder public key protocol: A comparison of
rity Foundations Workshgppages 255-268. IEEE two approaches. IRroceedings of ESORICS '96
Computer Society Press, June 2000. A revised ver- Springer-Verlag, 1996.

sion is to appear in théournal of Computer Secu-])]
Fity . [8] Einar Snekkenes. Roles in cryptographic protocols.

In Proceedings of the 1992 IEEE Computer Security
[5] John Kelsey and Bruce Schneier. Chosen interac- Symposium on Research in Security and Priyacy
tions and the chosen protocol attack. $ecurity pages 105-119. IEEE Computer Society Press, May
Protocols, 5th International Workshop April 1997 4-6 1992.
Proceedingspages 91-104. Springer-Verlag, 1998.

